How to Achieve Today’s Sustainability Goals While Improving Operational Performance

Striving for improved sustainability goals with advanced analytics can have multiple benefits to your operation.

In today’s world, virtually no industry is operating without consideration of their impact on the environment. It’s no secret that process manufacturers have been scrutinized for contributing to greenhouse gas emissions and excessive energy consumption, so striving for sustainability can sometimes be seen as a forced hassle. In contrast, however; achieving enhanced sustainability at a process manufacturing organization can actually result in better operational performance and efficiency, saving time and money for the manufacturer. Two birds, one stone.

Defining our Goals: United Nations SDGs

In recent years, the UN created a set of seventeen Sustainable Development Goals (SDGs) to reach by 2030 in an effort to universally protect the planet. Of these are four that pertain particularly to process manufacturing companies and how they can contribute to the global effort:

These four goals have become a guideline for the industry as a whole to craft corporate sustainability goals, and it’s evident that these have become a top priority. Besides the obligations that require companies to invest in sustainable processes, it’s also become known that changing operations to better align with these goals results in many other positive impacts.

Sustainability Doesn’t Happen in Spreadsheets

There are many challenges that process manufacturing teams face today in terms of meeting these sustainability goals. The first stems from the lack of tangible and actionable direction provided to team members at the plant, with broad guidelines set at a corporate level. Subject matter experts (SMEs) often do not have the resources within traditional data technology and methods to analyze their process data and make insight-based decisions to push their operation towards KPIs for improved sustainability.

The reality is that spreadsheets don’t provide any tools for efficiently contextualizing, cleansing, and analyzing data. Many teams spend numerous hours inside of spreadsheets trying to organize data for insight, leaving no time for actually making connections between the data that can lead to a reduction in waste, materials, or money spent.

Additionally, this method does not empower process manufacturers to make reliable predictions based on rapid and historical data. If an environmental violation happens, actions taken to correct it can only happen after it has occurred, and the opportunity to see what caused the problem can be missed.

Enter: Advanced Analytics

With advanced analytics applications, process manufacturing operations can generate compliance reports automatically, with up-to-date data from disparate sources, freeing up time to focus on environmental impact.

Beyond monitoring of data as it’s happening and opening a world of insight during incident investigation, the accessibility, presentation, and correlation of data contributes to effective predictive analytics. This can give teams insight into when unproductive downtime may occur and lead to wasted resources.

Advanced analytics can also provide SMEs with a better understanding of how process changes will affect the environment by reporting on KPIs geared towards specific sustainability measures and creating models to compare process performance and operating conditions to ideal levels.

Beyond this, advanced analytics makes it easy to share insight across an entire team—leaving the days of spreadsheet-sharing in the past. Results are error-free and accessible for the whole organization to maintain the same mindset, so regardless of level, everyone knows the company’s progress towards improved sustainability.

Applying Specific SDG Measures

Here are a few examples of ways that process manufacturers are utilizing advanced analytics to strive towards a better sustainability goals with lower impact on the environment, while also improving their operational performance.

The term “sustainability” can mean a lot of things, such as monitoring and controlling green house gas emissions, optimizing energy efficiency, implementing alternative energy sources, reducing waste and so on. These examples highlight the flexibility of Seeq; wherever you have environmental process data and would like to optimize your environmental performance, Seeq can be used.

SDG 6: Clean Water and Sanitation

Operations can avoid over-cleaning in clean-in-place (CIP) processes where sanitation materials can be unnecessarily used.

SDG 7: Affordable and Clean Energy

Process manufacturers are currently using advanced analytics to develop energy models and decrease total energy consumption, with minimal required capital expense.

SDG 12: Responsible Consumption and Production

Mass balance equations can be run continuously to track historical changes, providing an opportunity to find points where material is wasted.

SDG13: Climate Action

Many organizations are increasing generation of renewables and adopting smart grid technologies to mitigate carbon emissions through advanced analytics. Aggregation of methane emissions from various data sources through the use of advanced analytics can identify or predict places where methane is leaked, down to detailed micro-levels within the operation.

A Sustainable Future

It’s simple: Investing in a sustainability goals strategy is good for business. The efficient use of raw materials, less waste, and lower energy consumption both directly lead to an improved environment and your bottom-line. In addition, sustainable practices such as these can boost your reputation above the competitors in your industry. See how advanced analytics can work for your operation today.

How to Transform Data into Insight

Advanced data analytics is empowering process manufacturing teams across all verticals.

Enhanced accessibility into operational and equipment data has surged a transformation in the process manufacturing industry. Engineers can now see both historical and time-series data from their operation as it’s happening and at remote locations, so entire teams can be up-to-speed continuously and reliably. The only problem with this? Finding their team is “DRIP”—Data rich, information poor.

With tremendous amounts of data, a lack of proper organization, cleansing, and contextualizing only puts process engineers at a standstill. Some chemical environments have 20,000 to 70,000 signals (or sensors), oil refineries can have 100,000, and enterprise sensor data signals can reach millions.

These amounts of data can be overwhelming, but tactfully refining it can lead to greatly advantageous insights. Many SMEs and process engineers’ valuable time is filled with sorting through spreadsheets to try to wrangle the data, and not visualizing and analyzing patterns and models that lead to effective insight. With advanced analytics, process manufacturers can easily see all up-to-date data from disparate sources and make decisions based on the analysis to immediately improve operations.

Moving Up from “Data Janitors”

Moving data from “raw” to ready for analysis should not take up the majority of your subject matter experts’ time. Some organizations in today’s world still report that over 70 percent of their time involved with operational analytics is only dedicated to cleansing their data.

But your team is not “data janitors.” Today’s technology can take care of the monotonous and very time-consuming tasks of accessing, cleansing, and contextualizing data so your team can move straight to benefitting from the insights.

The Difference Between Spreadsheets and Advanced Analytics

For an entire generation, spreadsheets have been the method of choice for analyzing data in the process manufacturing industry. At the moment of analysis, the tool in use needs to enable user input to define critical time periods of interest and relevant context. Spreadsheets have been the way of putting the user in control of data investigation while offering a familiar, albeit cumbersome, path of analysis.

But the downfalls of spreadsheets have become increasingly apparent:

All of these pain points combine to an ultimate difficulty to reconcile and analyze data in the broader business context necessary for profitability and efficiency use cases to improve operational performance.

With advanced analytics, experts in process manufacturing operations on the front lines of configuring data analytics, improvements to the production’s yield, quality, availability, and bottom-lines are readily available.

How It’s Done

Advanced analytics leverages innovations in big data, machine learning, and web technologies to integrate and connect to all process manufacturing data sources and drive business improvement. Some of the capabilities include:

The Impact of Advanced Analytics

Simply put, advanced analytics gives you the whole picture. It draws relationships and correlations between specific data that need to be made in order to improve performance based on accurate and reliable insight. Seeq’s advanced analytics solution is specifically designed for process manufacturing data and has been empowering and saving leading manufacturers time and money upon immediate implementation. Learn more about the application and how it eliminates the need for spreadsheet exhaustion here.